A Few 5G Technical Challenges

Christian Jacquenet

Agenda

- 5G promises and framework
- Automation in the 5G era
 - Dynamic production and operation of "network slices"
 - An IoT example
- Security by design
- Spectrum
- Standardization
- Takeaways

5G Promises

 More objects, higher rates, low latency and high availability

Source: ETRI, from ITU-R IMT 2020 Requirements

5G Base Concept

- A modular and flexible, context-aware, multiaccess, Network-as-a-Service infrastructure
 - Based upon the dynamic creation, invocation and operation of so-called, (service-inferred)
 "network slices" (NGMN in its own words)
 - No one-size-fits-all approach anymore

Source: Network Slicing for 5G: Challenges and Opportunities, <u>IEEE Internet Computing</u>, Vol. 21, Issue 5, Sept. 2017

Automated 5G Service Delivery

- Outcomes of service parameter negotiation feed 5G computation logics (orchestration, SDN)
 - Along with other inputs, like network-originated notifications and available resources
- 5G service and slice are structured accordingly
 - Based upon abstract service components depicted in (serviceinferred) data models
- SDN computation logic then allocates resources (network, storage, CPU)
 - Forwards policy decisions and configuration information to participating devices

On Network Slices

- Provide multiple logical networks on top of a (shared) infrastructure
 - Each instance of a network slice represents a virtually independent network
- Are composed of various resources (network, CPU, storage) and functions (forwarding and routing, QoS, security, etc.)
 - As a function of the service
- "...Can be regarded as a new sophisticated form of Virtual Private Network (VPN) technology"
 - "NFV Enabling Network Slicing for 5G", B. Chatras et al., ICIN 2017

3 Standard Slice Types and an Embryonic Management Framework (So Far)

 Enhanced Mobile Broad-Band (eMBB), Ultra-Reliable Low Latency Communications (URLLC) and Massive IoT (MIoT)

Each type/service comes with a set of specific requirements documented in TS.22.261

- Network Slice Management and Orchestration is being investigated and documented in TR.28.801, in particular
- But slice parameter negotiation remains unaddressed (so far)

Source: Network Slicing Management and Orchestration, <u>draft-flinck-slicing-management</u>, July 2017

Negotiating Network Slices

- Network slice tenant in a "NSaaS" environment
 - Triggers negotiation cycle with NS provider
 - Network slice and related service functions parameters
- Completion of negotiation process then triggers slice design and instantiation
 - Involving orchestration/SDN computation logics
 - Based upon relevant data model

Source: "Problem Statement of Supervised Heterogeneous Network Slicing", <u>draft-geng-coms-problem-statement</u>, October 2017

Example of MIoT 5G Service Negotiation Outcomes

- Two services (e.g., e-health and home automation) structured as two MIoT slice instances associated with two Service Function Chains (SFC):
 - SFC1 = {DPI; 6lo (WPAN) encapsulation; ETX setting; 6lo de-capsulation}
 - SFC2 = {DPI; SCHC compression; 6lo (NFC) encapsulation; CoAP-to-HTTP; SCHC de-compression;
 6lo de-capsulation}

Security: The 5G Infrastructure Becomes Protective

- Attacks are becoming massively distributed and more and more efficient
 - 2017 Symantec <u>report</u> indicates that it takes less than 2 minutes to hack an object
 - Attacks last longer (24h+ for some of them) and generate more traffic (1+Tbps observed on OVH servers late 2016)
- Prevention and anticipation by means of predictive analysis and adapted signaling mechanism
 - Smart agents embedded in 5G resources (cloud, network) observe traffic (on specific ports) and signal any suspicion of malicious traffic
 - To their peers and to controller agent located in the 5G control plane
 - Malicious traffic wells and adapted filters are dynamically enforced
 - Behavioral analysis is then conducted, possibly leading to the distortion of traffic models

3GPP Standardization Roadmap

- European launch is foreseen in 2020
 - Field trials to ignite in 2019

Source: 3GPP

5G Spectrum

Harmonization

24,25-27,5 GHz		31,8-3 3	4 GHz	45,5-50,2 GHz 37-43,5 GHz 50,4-52,6 GHz		45,5-50,2 GHz 50,4-52,6 GHz	66-71 GHz 7 1-76 GHz		81-86 GHz		
	3,25 GHz		The out	ZHD 5'9		549 GHz		10 GHz		5 GHz	

- Unlike CMR-15 conference conclusions that reflect European recommendations, US and some Asian countries will be launching experiments in the 28 GHz band
- Europe will first investigate 26 GHz (given likely bi-mode device availability), then 32 and 42 GHz
- Various performances (coverage, rate, capacity) yield different frequency bands

Too	day	2019/2020	From 2021		
< 1 GHz	1 < F < 6 GHz	6 < F < 24 GHz	> 24 GHz		

Need to avoid 4G saturation from 2020/2023

5G Challenges are Manifold

- Automated, secure-by-design, 5G service engineering, delivery and operation
 - From dynamic 5G service parameter exposure and negotiation to delivery and operation
 - Al techniques can help
 - Feedback mechanisms are critical to assess how what has been delivered complies with what has been requested and negotiated
- Spectrum harmonization
 - To accommodate 5G operators' roadmaps with vendors' roadmaps
- Standardization
 - Completion of effort is not foreseen before early 2020 (Rel. 16 publication), meaning that every 5G-labelled experiment/deployment remains "pre-5G" before this milestone (e.g., Verizon's 5G Technical Forum)

A tricky equation is yet-to-be-solved, mixing costs (frequency, new 5G gear), regulation (frequency availability, net neutrality) and revenues (mass-market 5G monetization pattern, new business models, wholesale)

Thank You!